The Center
Multiple Sclerosis Center Dresden
Patient Information
Contact MSC
Physicians & Nurses
Study Team
Neuropsychology
Mobility Center
The Mobility Center
Walking Assessment
Jump Assessment
DIERS
EMIQ
Projects
Neuroimmunological Laboratory
The NIL
Neurofilament light chain
Autonomic & Neuroendocrinological Functional Laboratory
The ANF
ANF Assessment
MS Living Lab
Management & Science
Team Management & Science
Projects
eHealth & Analytics
MSDS 3D
MSDS Clinic & Practice
MS-HRS
MTRS
Multiple Sclerosis Management
Aktuelles
Neuigkeiten
Publikationen
Veranstaltungen
Adventssymposium
Multiple Sklerose 360°
Welt-MS-Tag 2021
Doktorarbeiten
Jobs
Kontakt
Podcasts & Newsletter
Newsletter
Patienten-Podcast
Ärzte-Podcast
Neurovision
Studien
Interventionelle Studien
B-SHUTTLE
Nicht-interventionelle Studien
MS PATHS
Konectom
Sprachanalyse
English (UK)
Deutsch
English (UK)
Using machine learning algorithms for identifying gait parameters suitable to evaluate subtle changes in gait in people with multiple sclerosis
Mobility
Jahr
Publikationsjahr
2021
Autoren
Autorenliste der Publikation
Trentzsch K, Schumann P, Śliwiński G, Bartscht P, Haase R, Schriefer D, Zink A, Heinke A, Jochim T, Malberg H, Ziemssen T.
Verlag
Publisher-Information
Brain Sci. 2021 Aug 7;11(8):1049.
Link
Zur Publikation (externer Server)
https://doi.org/10.3390/brainsci11081049
Tags
Forschungsthemen
Multiple Sklerose
Mobilität
2021
MOBI
Using machine learning algorithms to detect fear of falling in people with multiple sclerosis in standardized gait analysis
Mobility
Jahr
2024
The Association of Age, Sex, and BMI on Lower Limb Neuromuscular and Muscle Mechanical Function in People with Multiple Sclerosis
Mobility
Jahr
2024
Sensitive Identification of Asymmetries and Neuromuscular Deficits in Lower Limb Function in Early Multiple Sclerosis
Mobility
Jahr
2024
Use of machine learning algorithms to detect fear of falling in people with multiple sclerosis
Mobility
Jahr
2024
Sprunganalyse auf einer Kraftmessplatte – was sie über die MS verrät
Mobility
Jahr
2023